160 research outputs found

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Learning the facts in medical school is not enough: which factors predict successful application of procedural knowledge in a laboratory setting?

    Get PDF
    BACKGROUND: Medical knowledge encompasses both conceptual (facts or “what” information) and procedural knowledge (“how” and “why” information). Conceptual knowledge is known to be an essential prerequisite for clinical problem solving. Primarily, medical students learn from textbooks and often struggle with the process of applying their conceptual knowledge to clinical problems. Recent studies address the question of how to foster the acquisition of procedural knowledge and its application in medical education. However, little is known about the factors which predict performance in procedural knowledge tasks. Which additional factors of the learner predict performance in procedural knowledge? METHODS: Domain specific conceptual knowledge (facts) in clinical nephrology was provided to 80 medical students (3(rd) to 5(th) year) using electronic flashcards in a laboratory setting. Learner characteristics were obtained by questionnaires. Procedural knowledge in clinical nephrology was assessed by key feature problems (KFP) and problem solving tasks (PST) reflecting strategic and conditional knowledge, respectively. RESULTS: Results in procedural knowledge tests (KFP and PST) correlated significantly with each other. In univariate analysis, performance in procedural knowledge (sum of KFP+PST) was significantly correlated with the results in (1) the conceptual knowledge test (CKT), (2) the intended future career as hospital based doctor, (3) the duration of clinical clerkships, and (4) the results in the written German National Medical Examination Part I on preclinical subjects (NME-I). After multiple regression analysis only clinical clerkship experience and NME-I performance remained independent influencing factors. CONCLUSIONS: Performance in procedural knowledge tests seems independent from the degree of domain specific conceptual knowledge above a certain level. Procedural knowledge may be fostered by clinical experience. More attention should be paid to the interplay of individual clinical clerkship experiences and structured teaching of procedural knowledge and its assessment in medical education curricula

    Development and external validation of a multivariable [68^{68}Ga]Ga-PSMA-11 PET-based prediction model for lymph node involvement in men with intermediate or high-risk prostate cancer

    Full text link
    PURPOSE To develop and evaluate a lymph node invasion (LNI) prediction model for men staged with [68^{68}Ga]Ga-PSMA-11 PET. METHODS A consecutive sample of intermediate to high-risk prostate cancer (PCa) patients undergoing [68^{68}Ga]Ga-PSMA-11 PET, extended pelvic lymph node dissection (ePLND), and radical prostatectomy (RP) at two tertiary referral centers were retrospectively identified. The training cohort comprised 173 patients (treated between 2013 and 2017), the validation cohort 90 patients (treated between 2016 and 2019). Three models for LNI prediction were developed and evaluated using cross-validation. Optimal risk-threshold was determined during model development. The best performing model was evaluated and compared to available conventional and multiparametric magnetic resonance imaging (mpMRI)-based prediction models using area under the receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis (DCA). RESULTS A combined model including prostate-specific antigen, biopsy Gleason grade group, [68^{68}Ga]Ga Ga-PSMA-11 positive volume of the primary tumor, and the assessment of the [68^{68}Ga]Ga-PSMA-11 report N-status yielded an AUC of 0.923 (95% CI 0.863-0.984) in the external validation. Using a cutoff of  ≥ 17%, 44 (50%) ePLNDs would be spared and LNI missed in one patient (4.8%). Compared to conventional and MRI-based models, the proposed model showed similar calibration, higher AUC (0.923 (95% CI 0.863-0.984) vs. 0.700 (95% CI 0.548-0.852)-0.824 (95% CI 0.710-0.938)) and higher net benefit at DCA. CONCLUSIONS Our results indicate that information from [68^{68}Ga]Ga-PSMA-11 may improve LNI prediction in intermediate to high-risk PCa patients undergoing primary staging especially when combined with clinical parameters. For better LNI prediction, future research should investigate the combination of information from both PSMA PET and mpMRI for LNI prediction in PCa patients before RP

    Categorical versus continuous circulating tumor cell enumeration as early surrogate marker for therapy response and prognosis during docetaxel therapy in metastatic prostate cancer patients

    Get PDF
    Background: Circulating tumor cell (CTCs) counts might serve as early surrogate marker for treatment efficacy in metastatic castration-resistant prostate cancer (mCRPC) patients. We prospectively assessed categorical and continuous CTC-counts for their utility in early prediction of radiographic response, progression-free (PFS) and overall survival (OS) in mCRPC patients treated with docetaxel. Methods: CTC-counts were assessed in 122 serial samples, as continuous or categorical (= 5 CTCs) variables, at baseline (q0) and after 1 (q1),4 (q4) and 10 (q10) cycles of docetaxel (3-weekly, 75 mg/m2) in 33 mCRPC patients. Treatment response (TR) was defined as non-progressive (non-PD) and progressive disease (PD),by morphologic RECIST or clinical criteria at q4 and q10. Binary logistic and Cox proportional hazards regression analyses were used as statistical methods. Results: Categorical CTC-count status predicted PD at q4 already after one cycle (q1) and after 4 cycles (q4) of chemotherapy with an odds ratio (OR) of 14.9 (p = 0.02) and 18.0 (p = 0.01). Continuous CTC-values predicted PD only at q4 (OR 1.04, p = 0.048). Regarding PFS, categorical CTC-counts at q1 were independent prognostic markers with a hazard ratio (HR) of 3.85 (95 % CI 1.1-13.8, p = 0.04) whereas early continuous CTC-values at q1 failed significance (HR 1.02, 95 % CI 0.99-1.05, p = 0.14). For OS early categorical and continuous CTC-counts were independent prognostic markers at q1 with a HR of 3.0 (95 % CI 1.6-15.7, p = 0.007) and 1.02 (95 % CI 1.0-1.040, p = 0.04). Conclusions: Categorical CTC-count status is an early independent predictor for TR, PFS and OS only 3 weeks following treatment initiation with docetaxel whereas continuous CTC-counts were an inconsistent surrogate marker in mCRPC patients. For clinical practice, categorical CTC-counts may provide complementary information towards individualized treatment strategies with early prediction of treatment efficacy and optimized sequential treatment

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy

    Full text link
    Purpose: Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. Methods: Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. Conclusion: The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy.

    Get PDF
    PURPOSE Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. METHODS Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. RESULTS An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. CONCLUSION The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Proof-of-concept Study to Estimate Individual Post-Therapy Dosimetry in Men with Advanced Prostate Cancer Treated with 177Lu-PSMA I&T Therapy

    Full text link
    It is still debating if individualized dose should be applied for the emerging PSMA-targeted radionuclide therapy (RLT). A critical consideration in this debate is the necessity and feasibility of individual estimation of post-therapy dosimetry before the treatment. In this study, we aimed to prove the concept of individual dosimetry prediction based on pre-therapy imaging and laboratory measurements. Methods: 23 patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA-I&T RLT were included retrospectively. Included patients had available pre-therapeutic 68Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT dosimetry imaging. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake value (SUV) uptake was obtained from pretherapy PET/CT scans. Patient individual dosimetry was calculated for kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the post-treatment 177Lu-PSMA I&T imaging studies. Machine learning methods were explored for individual dose prediction from PET images. The accuracy of these dose predictions was compared with the accuracy of population-based dosimetry estimates. Mean absolute percentage error was used to assess the prediction error of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction error of 15.8 ± 13.2% for kidney, 29.6%±13.7% for liver, 23.8%±13.1% for salivary glands and 32.1 ± 31.4% for spleen. In contrast, the prediction based on literature population mean has significantly larger error (p < 0.01), 25.5 ± 17.3% for kidney, 139.1%±111.5% for liver, 67.0 ± 58.3% for salivary glands, and 54.1 ± 215.3% for spleen. Conclusion: The preliminary results confirmed the feasibility of individual estimation of post-therapy dosimetry before the RLT and its added value to empirical population-based estimation. The exploration of individual dose prediction may support the identification of the role of treatment planning for RLT
    • …
    corecore